Substitution at the chiral bismuth center of optically pure diastereomeric iodobismuthanes bearing an intramolecular $\mathrm{Bi}-\mathrm{N}$ coordination bond. Inversion of the configuration by aryl-Grignard reagents

Toshihiro Murafuji ${ }^{\text {a,*1 }}$, Izumi Makabe ${ }^{\text {a }}$, Kazuyoshi Nishio ${ }^{\text {a }}$, Yoshikazu Sugihara ${ }^{\text {a,*2 }}$, Yuji Mikata ${ }^{\text {b }}$, Shigenobu Yano ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Chemistry, Faculty of Science, Yamaguchi University, Yamaguchi 753-8512, Japan
${ }^{\text {b }}$ Department of Chemistry, Faculty of Science, Nara Women's University, Nara-shi, Nara 630-8506, Japan

Received 1 March 2000; accepted 26 March 2000

Abstract

Optically pure diastereomeric iodobismuthanes 3a and 3b underwent the substitution at the chiral bismuth center by 4-methylphenyl- and 4-chlorophenylmagnesium bromide to give bismuthane $\mathbf{4 a}$ and $\mathbf{4 b}$ as a single diastereomer, respectively. Each reaction was highly stereoselective. Comparison of $\mathbf{4 a}$ with $\mathbf{4 b}$ by ${ }^{1} H-N M R$ spectrum revealed that the chemical shifts of the aromatic ring protons are quite different from each other due to the anisotropic effect of the ferrocenyl group, which reflects the difference of the configuration around the chiral bismuth center. The differential ${ }^{1} \mathrm{H}-\mathrm{NMR}$ NOE experiments of $\mathbf{4 a}$ and $\mathbf{4 b}$ provided a critical evidence for the configuration in each compound. The X-ray crystallographic study of $\mathbf{4}$ demonstrated that the substitution proceeds with inversion of the configuration at the chiral bismuth center. © 2000 Elsevier Science S.A. All rights reserved.

Keywords: Bismuth; Optically pure bismuthane; Chiral ferrocenyl group; Intramolecular coordination; Substitution; Inversion; Grignard reagent

1. Introduction

Although a number of compounds bearing an optically active heteroatom center of the Group 15 elements have been reported, the research is limited to phosphorus, arsenic and antimony [1-3]. To our knowledge, no such examples of bismuth appeared. Recently, we have first succeeded in the synthesis of an optically pure diastereomeric iodobismuthane 3a by using intramolecular $\mathrm{Bi}-\mathrm{N}$ coordination and the planar chirality of ferrocene, and characterized the structure by X-ray crystallography [4]. This paper describes the substitution at the chiral bismuth center of optically pure iodobismuthanes $\mathbf{3}$ by aryl-Grignard reagents.

[^0]
2. Results and discussion

Optically pure iodobismuthanes $\mathbf{3}$ were synthesized in two steps by using diastereoselective ortholithiation of (R)-(+)- N, N-dimethyl-1-ferrocenylethylamine (1), as shown in Scheme 1 [4]. The small $\mathrm{C}-\mathrm{Bi}-\mathrm{C}$ bond angle (ca. 93°) enhances the repulsive interaction between the endo aromatic substituent and the ferrocene moiety, so that exo isomers 3 form exclusively.

Iodobismuthane 3a underwent substitution at the chiral bismuth center by 4-methylphenylmagnesium bromide to give bismuthane $\mathbf{4 a}$ as a single diastereomer (Scheme 2). A similar reaction of $\mathbf{3 b}$ with 4chlorophenylmagnesium bromide afforded only bismuthane 4b. Each reaction was highly stereoselective, which suggests that the substitution proceeds via a single route. These diastereomers did not suffer at all from thermal epimerization in refluxing toluene, but underwent disproportionation to $\mathbf{2 a}$ or $\mathbf{2 b}$ when purified

Scheme 1.

Scheme 2.
by chromatography on silica gel (hexane-ethyl acetate).

The ${ }^{1} \mathrm{H}$-NMR spectral study of $\mathbf{3}$ and $\mathbf{4}$ provided some structural findings about the difference of the conformation between these bismuthanes. The proton signals of the $\mathrm{Me}_{2} \mathrm{~N}$ group in $\mathbf{4}$ appeared as a sharp singlet like $\mathbf{1}$ although those in $\mathbf{3}$ were observed as two very broad singlets which coalesced at $40^{\circ} \mathrm{C}$. This suggests that the vertex inversion at the nitrogen atom which is followed by rotation about the $\mathrm{CH}(\mathrm{Me})-\mathrm{N}$ bond of 180° takes place rapidly in $\mathbf{4}$ due to the lowered Lewis acidity of the bismuth atom relative to 3 . The signal due to the proton adjacent to the bismuth atom in the $\mathrm{C}_{5} \mathrm{H}_{3}$ ring of $\mathbf{4}$ appeared at an upfield region (ca. 0.3 ppm) compared with those due to the other two
protons in this ring. Furthermore, the proton signals of the $\mathrm{C}_{5} \mathrm{H}_{5}$ ring in 4 were observed at an upfield region (ca. 0.3 ppm) compared with those in 3 . These findings show that both the $\mathrm{C}_{5} \mathrm{H}_{3}$ ring proton and the $\mathrm{C}_{5} \mathrm{H}_{5}$ ring protons in $\mathbf{4}$ suffer from upfield shift by the ring current of one of the aryl groups at the chiral bismuth center. Thus, the aryl groups of $\mathbf{4}$ possess an axial-equatorial orientation relative to the ferrocene axis, and furthermore, the rotation of the $\mathrm{Bi}-\mathrm{C}$ (cyclopentadienyl) bond toward the reverse side of the adjacent side chain in the ferrocenyl group is considered to be present. The ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{4 a}$ and $\mathbf{4 b}$ are quite different from each other in the chemical shifts of the aryl ring protons, which reflects the difference of the configuration around the chiral bismuth center between these diastereomers. If the ring protons of the axial aryl group appear at an upfield region compared with those of the equatorial one due to the anisotropic effect of the $\mathrm{C}_{5} \mathrm{H}_{3}$ ring, this may infer the orientation of the aryl groups in $\mathbf{4 a}$ and $\mathbf{4 b}$. Such an effect is actually observed in 2-[2-(diphenylphosphino)ferrocenyl]oxazoline, where the two phenyl groups at the phosphorus atom have been revealed to possess axial-equatorial orientation by X-ray crystallography [5]. Thus, comparison of chemical shifts of the aryl ring protons revealed that the upfield shift of proton signals of the 4-methylphenyl group and that of the 4 -chlorophenyl group were observed in $\mathbf{4 a}$ and $\mathbf{4 b}$, respectively, which is suggestive of the axial orientation of the aryl group in the respective diastereomers.
The differential ${ }^{1} \mathrm{H}$-NMR NOE experiments of $\mathbf{4 a}$ and $\mathbf{4 b}$ afforded reliable and critical evidence for the configuration around the chiral bismuth center of each diastereomer. The result is consistent with that estimated from the anisotropic effect. As shown in Scheme 3, two key NOEs were observed very clearly, i.e. between the proton signals of the equatorial aryl group and those of the $\mathrm{C}_{5} \mathrm{H}_{5}$ ring (9.7 and 7.5% in $\mathbf{4 a}$ and $\mathbf{4 b}$, respectively) and, furthermore, between the proton signals of the axial aryl group and those of the $\mathrm{Me}_{2} \mathrm{~N}$ group (10.9 and 10.2% in $\mathbf{4 a}$ and $\mathbf{4 b}$, respectively). These results manifest that the respective diastereomer

4a

Scheme 3.

Fig. 1. ORTEP drawing of $\mathbf{4 a}$.

Fig. 2. ORTEP drawing of $\mathbf{4 b}$.
has the opposite configuration around the chiral bismuth center.

An X-ray crystallographic study demonstrated that the structure of $\mathbf{4 a}$ and $\mathbf{4 b}$ is in accord with that estimated by the NOE experiments (Figs. 1 and 2). Thus, the substitution at the chiral bismuth center by the aryl-Grignard reagents was revealed to proceed with inversion of the configuration. The reaction is considered to take place via the following pathway, that is, the intramolecular bismuth-nitrogen coordination bond of 3 is first cleaved by the coordination of the $\mathrm{Me}_{2} \mathrm{~N}$ group with the aryl-Grignard reagent, which attacks the chiral bismuth center from the back of the bismuth-iodine bond to give $\mathbf{4}$ as a single diastereomer. Cleavage of the bismuth-nitrogen coordination bond
by the aryl-Grignard reagents is considered to take place easily as judged from the behavior of the $\mathrm{Me}_{2} \mathrm{~N}$ group in the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of $\mathbf{3}$ [4]. Coordinationmediated substitution by a nucleophile is reported in the spirophsphorane bearing a $\mathrm{Me}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{O}$ group as a substituent at the phosphorus center, where this group captures n-butyllithium as a nucleophile through the chelation of the lithium cation to undergo nucleophilic substitution with retention of configuration [6]. Unlike 3a, the $\mathrm{Me}_{2} \mathrm{~N}$ group is not coplanar with the $\mathrm{C}_{5} \mathrm{H}_{3}$ ring in 4 and the intramolecular $\mathrm{Bi}-\mathrm{N}$ distances [3.25(1) and 3.208(9) \AA in $\mathbf{4 a}$ and $\mathbf{4 b}$, respectively] (Table 2) are much longer than that of $\mathbf{3 a}[2.71(1) \AA]$ [4] although they are within the sum of the van der Waals radii $(3.66 \AA)$. This is consistent with the difference of behavior of the $\mathrm{Me}_{2} \mathrm{~N}$ group between 3 and $\mathbf{4}$ in the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum. Each equatorial aryl group of $\mathbf{4 a}$ and $\mathbf{4 b}$ faces the iron atom rather than the $\mathrm{C}_{5} \mathrm{H}_{3}$ ring proton, which is responsible to the observation of the ferrocenyl proton signals in an upfield region. Another

Table 1
Crystal and structure determination data for $\mathbf{4 a}$ and $\mathbf{4 b}$

Compound	4a	4b
Formula	$\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{BiClFeN}$	$\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{BiClFeN}$
Formula weight	667.81	667.81
$a(\AA)$	6.514(2)	6.453(3)
$b \AA$	10.273(2)	20.679(3)
$c \AA$	19.379(6)	9.729 (2)
$\beta\left({ }^{\circ}\right.$)	97.95(5)	103.61(2)
$V\left(\AA^{3}\right)$	1284.4.(6)	1261.8(6)
Crystal color and shape	Yellow and prismatic	Yellow and prismatic
Crystal system	Monoclinic	Monoclinic
Space group	$P 2_{1}(\# 4)$	P2 ${ }_{1}$ (\#4)
Z	2	2
$F(000)$	648.00	648.00
$D_{\text {calc }}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	1.727	1.758
Crystal dimensions (mm)	$0.10 \times 0.10 \times 0.10$	$0.10 \times 0.10 \times 0.10$
$\mu\left(\mathrm{cm}^{-1}\right)$	75.11	76.45
Collection range (${ }^{\circ}$)	$2 \theta_{\text {max }}=54.9$	$2 \theta_{\text {max }}=55.0$
Scan rate (${ }^{\circ} \min ^{-1}$)	16.0	16.0
Scan width (${ }^{\circ}$)	$1.15+0.30 \tan \theta$	$1.10+0.30 \tan \theta$
Number of unique reflections	3118	4477
Number of observed data	$3653[I>3.00 \sigma(I)]$	$4546[I>3.00 \sigma(I)]$
Number of variables	282	281
Range of transmission factors	0.8517-0.9980	0.9055-0.9998
$R^{\text {a }}$	0.040	0.042
$R_{\text {w }}{ }^{\text {a }}$	0.049	0.050
Maximum peak in final Fourier map $\left(\mathrm{e}^{\AA^{-3}}\right)$	2.98	1.85
Minimum peak in final Fourier map (e \AA^{-3})	-0.58	-3.64
Goodness of fit	1.08	1.22
$\begin{gathered} { }^{\mathrm{a}} R=\Sigma\| \| F_{\mathrm{o}}\left\|-\left\|F_{\mathrm{c}}\right\| / \Sigma\right\| F_{\mathrm{o}} \mid, \\ \sigma^{2}\left(F_{\mathrm{o}}\right)=\left[\sigma_{c}^{2}\left(F_{\mathrm{o}}\right)+\left(p^{2} / 4\right) F_{\mathrm{c}}^{2}\right. \end{gathered}$	$R_{\mathrm{w}}=\left[\Sigma w \left(\left\|F_{\mathrm{o}}\right\|-\mid 1\right.\right.$	$)^{2} / \Sigma w F_{\mathrm{o}}^{2} \mathrm{~b}^{1 / 2} ; \quad w=$

Table 2
Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for $\mathbf{4 a}$ and $\mathbf{4 b}$ with estimated S.D. values in parentheses

$\mathbf{4 a}$		4b	
Bond lengths			$2.27(1)$
$\mathrm{Bi}(1)-\mathrm{C}(1)$	$2.27(1)$	$\mathrm{Bi}(1)-\mathrm{C}(1)$	$2.29(1)$
$\mathrm{Bi}(1)-\mathrm{C}(21)$	$2.25(1)$	$\mathrm{Bi}(1)-\mathrm{C}(21)$	$2.22(1)$
$\mathrm{Bi}-\mathrm{C}(7)$	$2.24(1)$	$\mathrm{Bi}(1)-\mathrm{C}(7)$	$3.208(9)$
$\mathrm{Bi} \cdots \mathrm{N}(1)$	$3.25(1)$	$\mathrm{Bi} \cdots \mathrm{N}(1)$	
Bond angles			$94.8(4)$
$\mathrm{C}(1)-\mathrm{Bi}(1)-\mathrm{C}(7)$	$93.0(5)$	$\mathrm{C}(1)-\mathrm{Bi}(1)-\mathrm{C}(7)$	$93.6(4)$
$\mathrm{C}(1)-\mathrm{Bi}(1)-\mathrm{C}(21)$	$94.0(4)$	$\mathrm{C}(1)-\mathrm{Bi}(1)-\mathrm{C}(21)$	$92.3(4)$
$\mathrm{C}(7)-\mathrm{Bi}(1)-\mathrm{C}(21)$	$94.3(5)$	$\mathrm{C}(7)-\mathrm{Bi}(1)-\mathrm{C}(21)$	$123.1(8)$
$\mathrm{Bi}(1)-\mathrm{C}(7)-\mathrm{C}(8)$	$122.6(10)$	$\mathrm{Bi}(1)-\mathrm{C}(7)-\mathrm{C}(8)$	$130.8(8)$
$\mathrm{Bi}(1)-\mathrm{C}(7)-\mathrm{C}(11)$	$129(1)$	$\mathrm{Bi}(1)-\mathrm{C}(7)-\mathrm{C}(11)$	

structural feature of these diastereomers lies in the bismuth-carbon bond length. Among the three bis-muth-carbon bonds in each diastereomer, the following relation is found to hold; $\operatorname{Bi}(1)-\mathrm{C}\left(\mathrm{Ar}_{\mathrm{eq}}\right)>$ $\mathrm{Bi}(1)-\mathrm{C}\left(\mathrm{Ar}_{\mathrm{ax}}\right)>\operatorname{Bi}(1)-\mathrm{C}($ ferrocenyl $)$. The elongation of the $\operatorname{Bi}(1)-\mathrm{C}\left(\mathrm{Ar}_{\text {eq }}\right)$ bond compared with the $\mathrm{Bi}(1)-\mathrm{C}\left(\mathrm{Ar}_{\mathrm{ax}}\right)$ one probably associates with the intramolecular coordination of the $\mathrm{Me}_{2} \mathrm{~N}$ group. This is suggested by the fact that the $\operatorname{Bi}(1)-C\left(\mathrm{Ar}_{\text {eq }}\right)$ bond lengthens with decreasing intramolecular $\mathrm{Bi}-\mathrm{N}$ distance. The shortest $\mathrm{Bi}(1)-\mathrm{C}($ ferrocenyl) bond length is ascribable to the effect of the bidentate ferrocenyl group. The $\mathrm{Bi}(1)-\mathrm{C}($ ferrocenyl) bond is observed to become shorter with decreasing intramolecular $\mathrm{Bi}-\mathrm{N}$ distance. This tendency is also the case for $\mathbf{3 a}$ where the $\mathrm{Bi}(1)-\mathrm{C}($ ferrocenyl) bond length and the intramolecular $\mathrm{Bi}-\mathrm{N}$ distance are $2.19(1)$ and $2.71(1) \AA$, respectively.

The values of the specific rotation $[\alpha]_{\mathrm{D}}^{23}\left(c 1.0, \mathrm{CHCl}_{3}\right)$ in $\mathbf{4 a}$ and $\mathbf{4 b}$ are -378 and -412 , respectively, which are similar to those of $2\left([\alpha]_{\mathrm{D}}^{23}-330[4]\right.$ and -391° for $\mathbf{2 a}$ and $\mathbf{2 b}$, respectively) but smaller than those of $\mathbf{3}$ $\left([\alpha]_{D}^{23}-546[4]\right.$ and -494° for 3a and 3b, respectively). The difference of the value between $\mathbf{4 a}$ and $\mathbf{4 b}$ reflects that of the configuration at the chiral bismuth center.

3. Experimental

All reactions were carried out under argon. Diethyl ether and THF were distilled from calcium hydride under nitrogen before use. Bismuth(III) chloride was purified by refluxing with thionyl chloride. ${ }^{1} \mathrm{H}$ NMR spectra were recorded in CDCl_{3} on a Bruker Avance $400 \mathrm{~S}(400 \mathrm{MHz})$ spectrometer with tetramethylsilane as an internal standard. Optical rotations were taken with SEPA-300 (HORIBA) in solution in a $1-\mathrm{dm}$ cell.

3.1. Synthesis of $\{(S)-2-[(R)-1-($ dimethylamino $)-$ ethylfferrocenyl\}bis(4-methylphenyl)bismuthane (2b)

According to the literature method [4], to a solution of $\mathbf{1}(0.51 \mathrm{ml} ; 2 \mathrm{mmol})$ in diethyl ether (10 ml) was added at ice bath temperature tert-butyllithium (2.1 mmol), and the mixture was stirred at room temperature (r.t.) for 2 h . To a suspension of the lithium compound thus obtained was added at ice bath temperature an ethereal suspension of chlorobis(4methylphenyl)bismuthane (ca. 2 mmol), and the resulting mixture was stirred for 15 min . After the addition of brine (5 ml), the mixture was diluted with ethyl acetate $(10 \mathrm{ml})$ and the insoluble polymeric substances were filtered off. The organic layer was separated and evaporated under reduced pressure to leave a brown oil, which was crystallized from MeOH to give the pure product as orange crystals ($705 \mathrm{mg}, 54 \%$ yield). M.p. $142-144^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}: \delta 1.16(3 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}, \mathrm{Me})$, $1.83\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{2} \mathrm{~N}\right), 2.28(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.33(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$, $3.96\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{3}\right), 3.98\left(5 \mathrm{H}, \mathrm{s}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 4.03(1 \mathrm{H}, \mathrm{q}$, $J=6.7 \mathrm{~Hz}, \mathrm{MeCH}), 4.21\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{3}\right), 7.09(2 \mathrm{H}, \mathrm{d}$, $\left.J_{\mathrm{AB}}=7.9 \mathrm{~Hz}, \mathrm{ArH}\right), 7.19\left(2 \mathrm{H}, \mathrm{d}, J_{\mathrm{AB}}=7.9 \mathrm{~Hz}, \mathrm{ArH}\right)$, $7.61\left(2 \mathrm{H}, \mathrm{d}, J_{\mathrm{AB}}=7.9 \mathrm{~Hz}, \mathrm{ArH}\right), 7.75\left(2 \mathrm{H}, \mathrm{d}, J_{\mathrm{AB}}=7.9\right.$ $\mathrm{Hz}, \mathrm{ArH}) .[\alpha]_{\mathrm{D}}^{23}-391$ (c 1.0, CHCl_{3}). Anal. Calc. for $\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{BiFeN}: \mathrm{C}, 51.95 ; \mathrm{H}, 4.98$; N, 2.16. Found: C, 51.75: H, 4.82; N, 1.98\%.

3.2. Synthesis of exo-4-methylphenyl $\{(S)-2-[(R)-1-$ (dimethylamino)ethyllferrocenyl\}iodobismuthane (3b)

According to the literature method [4], to a solution of compound $\mathbf{2 b}$ ($314 \mathrm{mg} ; 0.5 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$ was added dropwise at ice bath temperature boron trifluoride-diethyl etherate until $\mathbf{2 b}$ was consumed (checked by TLC), and the mixture was stirred at r.t. for 1 h . After the addition of brine (5 ml), the mixture was diluted with ethyl acetate $(10 \mathrm{ml})$ and the organic layer was separated and evaporated under reduced pressure to leave a brown oil. Recrystallization from ethyl acetate gave the pure product as orange crystals ($286 \mathrm{mg}, 91 \%$ yield). M.p. $195-198^{\circ} \mathrm{C}$ (dec.). ${ }^{1} \mathrm{H}-\mathrm{NMR}$: $\delta 1.12(3 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}, \mathrm{Me}), 1.60(3 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{MeN})$, $2.29(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.60(3 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{MeN}), 4.23(1 \mathrm{H}, \mathrm{q}$, $J=6.7 \mathrm{~Hz}, \mathrm{MeCH}), 4.25\left(5 \mathrm{H}, \mathrm{s}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 4.31(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{C}_{5} \mathrm{H}_{3}\right), 4.43\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{3}\right), 4.82\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{3}\right), 7.26$ $\left(2 \mathrm{H}, \mathrm{d}, J_{\mathrm{AB}}=7.9 \mathrm{~Hz}, \mathrm{ArH}\right), 8.10\left(2 \mathrm{H}, \mathrm{d}, J_{\mathrm{AB}}=7.9 \mathrm{~Hz}\right.$, $\mathrm{ArH}) .[\alpha]_{\mathrm{D}}^{23}-494$ (c 1.0, CHCl_{3}). Anal. Calc. for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{BiFeIN}: \mathrm{C}, 36.92 ; \mathrm{H}, 3.69$; N, 2.05. Found: C, 36.71: H, 3.50; N, 1.96\%.

3.3. Synthesis of (4-chlorophenyl) $\{(S)-2-[(R)-1-$ (dimethylamino)ethyllferrocenyl\}(4-methylphenyl)-(S)bismuthane (4a)

To a solution of compound 3a ($194 \mathrm{mg} ; 0.3 \mathrm{mmol}$) in THF (5 ml) was added dropwise at ice bath tempera-
ture 4-methylphenylmagnesium bromide in THF (5 ml) until 3a was consumed (checked by TLC). The reaction was quenched by the addition of brine (3 ml) and the organic layer was evaporated under reduced pressure to afford crude compound $\mathbf{4 a}$. Recrystallization from MeOH gave pure product as orange crystals $(138 \mathrm{mg}$, 69% yield). M.p. $123-125^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}: \delta 1.14(3 \mathrm{H}, \mathrm{d}$, $J=6.7 \mathrm{~Hz}, \mathrm{Me}), 1.81\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{2} \mathrm{~N}\right), 2.28(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$, $3.89\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{3}\right), 3.99\left(5 \mathrm{H}, \mathrm{s}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 4.01(1 \mathrm{H}, \mathrm{q}$, $J=6.7 \mathrm{~Hz}, \mathrm{MeCH}), 4.24\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{3}\right), 7.11(2 \mathrm{H}, \mathrm{d}$, $\left.J_{\mathrm{AB}}=7.3 \mathrm{~Hz}, \mathrm{MeAr} H\right), 7.31\left(2 \mathrm{H}, \mathrm{d}, J_{\mathrm{AB}}=7.3 \mathrm{~Hz}\right.$, ClArH), $7.59\left(2 \mathrm{H}, \mathrm{d}, J_{\mathrm{AB}}=7.3 \mathrm{~Hz}, \mathrm{MeAr} H\right), 7.77(2 \mathrm{H}$, $\left.\mathrm{d}, J_{\mathrm{AB}}=7.3 \mathrm{~Hz}, \mathrm{ClArH}\right) .[\alpha]_{\mathrm{D}}^{23}-378\left(c 1.0, \mathrm{CHCl}_{3}\right)$. Anal. Calc. for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{BiClFeN}: \mathrm{C}, 48.56 ; \mathrm{H}, 4.38 ; \mathrm{N}$, 2.10. Found: C, 48.40: H, 4.22; N, 2.02\%.
3.4. Synthesis of (4-chlorophenyl) $\{(S)-2-[(R)-1-$ (dimethylamino)ethyllferrocenyl\}(4-methylphenyl)-(R)bismuthane (4b)

To a solution of compound $\mathbf{3 b}(188 \mathrm{mg} ; 0.3 \mathrm{mmol})$ in THF (5 ml) was added dropwise at ice bath temperature 4-chlorophenylmagnesium bromide in THF (5 ml) until 3b was consumed (checked by TLC). The reaction was quenched by the addition of brine (3 ml) and the organic layer was evaporated under reduced pressure to afford crude compound 4b. Recrystallization from MeOH gave pure product as orange crystals $(111 \mathrm{mg}$, 56% yield). M.p. $125-126^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}: \delta 1.15(3 \mathrm{H}, \mathrm{d}$, $J=6.7 \mathrm{~Hz}, \mathrm{Me}), 1.81\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{2} \mathrm{~N}\right), 2.28(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$, $3.96\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{3}\right), 4.00\left(5 \mathrm{H}, \mathrm{s}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 4.01(1 \mathrm{H}, \mathrm{q}$, $J=6.7 \mathrm{~Hz}, \mathrm{MeCH}), 4.24\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{3}\right), 7.23(2 \mathrm{H}, \mathrm{d}$, $\left.J_{\mathrm{AB}}=7.3 \mathrm{~Hz}, \mathrm{MeAr} H\right), 7.25\left(2 \mathrm{H}, \mathrm{d}, J_{\mathrm{AB}}=7.3 \mathrm{~Hz}\right.$, ClArH), $7.65\left(2 \mathrm{H}, \mathrm{d}, J_{\mathrm{AB}}=7.3 \mathrm{~Hz}, \mathrm{ClArH}\right), 7.72(2 \mathrm{H}$, $\left.\mathrm{d}, J_{\mathrm{AB}}=7.3 \mathrm{~Hz}, \mathrm{MeAr} H\right) .[\alpha]_{\mathrm{D}}^{23}-412\left(c 1.0, \mathrm{CHCl}_{3}\right)$. Anal. Calc. for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{BiClFeN}: \mathrm{C}, 48.56 ; \mathrm{H}, 4.38 ; \mathrm{N}$, 2.10. Found: C, 48.44: H, 4.30; N, 2.01\%.

3.5. X-ray crystal structure analyses of $\mathbf{4 a}$ and $\mathbf{4 b}$

All measurements were made on a Rigaku AFC7R diffractometer with graphite-monochromated $\mathrm{Mo}-\mathrm{K}_{\alpha}$ radiation $(\lambda=0.71069 \AA)$. The data were collected at 296 K using the $\omega-2 \theta$ scan technique. Three standard reflections were monitored every 150 reflections and a linear correction factor was applied to the data correction for 4a. Reflection data were corrected for Lorentzpolarization and absorption (by ψ-scan method) effects. The weighting scheme was based on counting statistics and included a factor $(p=0.050)$ to downweight the intense reflections. The structure of 4 a and 4b was solved by direct methods with SIR-92 [7] and expanded using Fourier techniques [8]. The non-hydrogen atoms were refined anisotropically. Neutral-atom scattering factors were taken from Cromer and Waber [9]. Anomalous dispersion effects were included in $F_{\text {calc }}$
[10]; the values for Δf^{\prime} and $\Delta f^{\prime \prime}$ were those of Creagh and McAuley [11]. The values for the mass attenuation coefficients are those of Creagh and Hubbel [12]. All calculations were carried out on a Silicon Graphics Indigo2 workstation with the TEXSAN program [13]. Perspective drawings were drawn by using the ORTEP program [14]. The chirality has been determined by refinement of the Flack parameter. The chirality test was also examined by the R factor for the inverted structure. The R factors for the corresponding enantiomeric structure were 0.068 and 0.072 for $\mathbf{4 a}$ and $\mathbf{4 b}$, respectively (Table 1).

4. Supplementary material

Complete lists of bond lengths and angles, hydrogen atom coordinates and anisotropic thermal parameters have been deposited at the Cambridge Crystallographic Data Centre (nos. CCDC 141120 and 141121). Copies of this information may be obtained free of charge from: The Director, CCDC, 12 Union Road, Cambridge, CB2 1EZ, UK (Fax: + 44-1223-336-033; e-mail: deposit@ccdc.cam.ac.uk or www: http://www.ccdc. cam.ac.uk).

Acknowledgements

Support from the Ministry of Education, Science, Sports and Culture, Japan (Grant-in-Aid for Exploratory Research, No. 09874134 and for Scientific Research on Priority Area (A), nos. 11133241 and 11120237) is gratefully acknowledged. T.M. thanks Associate Professor Dr Hidemitsu Uno (Ehime University) for the performance of the differential ${ }^{1} \mathrm{H}-\mathrm{NMR}$ NOE experiments and for useful suggestion.

References

[1] (a) L. Horner, F. Schedlbauer, P. Beck, Tetrahedron Lett. (1964) 1421. (b) O. Korpiun, R.A. Lewis, J. Chickos, K. Mislow, J. Am. Chem. Soc. 90 (1968) 4842. (c) K. Naumann, G. Zon, K. Mislow, J. Am. Chem. Soc. 91 (1969) 7012.
[2] I.G.M. Campbell, R.C. Poller, J. Chem. Soc. (1956) 1195.
[3] (a) I.G.M. Campbell, J. Chem. Soc. (1950) 3109. (b) I.G.M. Campbell, J. Chem. Soc. (1952) 4448. (c) I.G.M. Campbell, D.J. Morrill, J. Chem. Soc. (1955) 1662.
[4] T. Murafuji, K. Satoh, Y. Sugihara, N. Azuma, Organometallics 17 (1998) 1711.
[5] C.J. Richards, T. Damalidis, D.E. Hibbs, M.B. Hursthouse, Synlett (1995) 74.
[6] S. Kojima, M. Nakamoto, K. Yamazaki, K.-y. Akiba, Tetrahedron Lett. 38 (1997) 4107.
[7] SIR-92: A. Altomare, M.C. Burla, M. Camalli, M. Cascarano, C. Giacovazzo, A. Guagliardi, G. Polidori, J. Appl. Crystallogr. 27 (1994) 435.
[8] DIRDIF-94: P.T. Beurskens, G. Admiraal, G. Beurskens, W.P. Bosman, R. de Gelder, R. Israel, J.M.M. Smits, The dirdif-94 Program System, Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands, 1994.
[9] D.T. Cromer, J.T. Waber, International Tables for X-ray Crystallography (table 2.2a), vol. IV, Kyonoch, Birmingham, UK, 1974.
[10] J.A. Ibers, W.C. Hamilton, Acta Crystallogr. 17 (1964) 781.
[11] D.C. Creagh, W.J. McAuley, International Tables for Crystallography (table 2.3.6.8), vol. C, Kluwer, Boston, 1992, p. 219.
[12] D.C. Creagh, J.H. Hubbell, International Tables for Crystallography (table 4.2.4.3), vol. C, Kluwer, Boston, 1992, p. 200.
[13] TEXSAN: Molecular Structure Corporation, The Woodlands, TX, 1985 and 1992.
[14] C.K. Johnson, ortep II, Oak Ridge National Laboratory, Oak Ridge, TN, 1976.

[^0]: ${ }^{1 *}$ Corresponding author. Fax: +81-83-9335768; e-mail: mura-fuji@po.cc.yamaguchi-u.ac.jp.
 $2 *$ Corresponding author. Fax: +81-83-9335768; e-mail: sugi-hara@po.cc.yamaguchi-u.ac.jp.

